Substituted Pentacyclic Carbazolones as Novel Muscarinic Allosteric Agents: Synthesis and Structure-Affinity and Cooperativity Relationships

Parviz Gharagozloo,*,† Sebastian Lazareno, ${ }^{\dagger}$ Masao Miyauchi, ${ }^{\dagger, \mp}$ Angela Popham, ${ }^{\dagger}$ and Nigel J. M. Birdsall ${ }^{\S}$
MRC Technology Research Division, 1-3 Burtonhole Lane, Mill Hill, London, NW7 1AD, U.K., and
Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London, NW7 1AA, U.K.

Received J une 7, 2001

Abstract

Two series of pentacydic carbazolones, 22 and 23, have been synthesized utilizing a facile intramolecular Diels-Alder reaction and are allosteric modulators at muscarinic acetylcholine receptors. Their affinities and cooperativities with acetylcholine and the antagonist N methylscopolamine (NMS) at $\mathrm{M}_{1}-\mathrm{M}_{4}$ receptors have been analyzed and compared. All of the synthesized compounds are negatively cooperative with acetylcholine. In contrast, the majority of the compounds exhibit positive cooperativity with NMS , particularly at M_{2} and M_{4} receptors. The subtype selectivity, in terms of affinity, was in general $M_{2}>M_{1}>M_{4}>M_{3}$. The largest increases in affinity produced by a single substitution of the core structure were given by the 1-OMe (22b) and 1-CI (22d) derivatives. The position of the N in the ring did not appear to be important for binding affinity or cooperativity. Two compounds 22y and 23i, both trisubstituted analogues, were the most potent compounds synthesized, with dissociation constants of 30100 nM for the M_{2} N MS-liganded and unliganded receptor, respectively. The results indicate that the allosteric site, like the primary binding site, is capable of high-affinity interactions with molecules of relatively low molecular weight.

I ntroduction

Until recently, it has proven difficult to discover competitive antagonists that exhibit a substantial selectivity for any one of the five muscarinic receptor subtypes ($\mathrm{M}_{1}-\mathrm{M}_{5}$) over all the other subtypes. ${ }^{1-4}$ In fact, no M_{5} selective antagonist and no agonists of substantial subtype selectivity, at least based on "affinity", have been described. This has been disappointing in view of the importance of muscarinic receptors as therapeutic targets in a variety of diseases, including asthma, disorders of intestinal motility, urinary bladder dysfunction, and Alzheimer's disease, and in the control of pain. ${ }^{2}$

The difficulty in designing subtype selective competitive muscarinic agents is probably because of the strong conservation of sequence in regions considered to bind agonists. ${ }^{5,6}$ Muscarinic receptors contain a second, allosteric, binding site in addition to the "primary" site, which binds acetylcholine (ACh), as well as competitive antagonists such as N -methylscopol amine and atropine (for recent reviews, see refs 7-12). It is conceivable that there could be greater sequence differences between the amino acid residues contributing to the allosteric sites on different muscarinic receptor subtypes, hence providing a prospect of developing agents with greater subtype selectivity, based on affinity. M oreover, ligands binding to the allosteric site modulate the binding and actions of ligands, including ACh, at the primary binding site

[^0]

Figure 1. Ternary complex model of allosteric action of a ligand L with an allosteric agent X at a receptor R .
on muscarinic receptors. Intrinsic to allosteric agents is a form of selectivity that is based on differences in cooperativity between subtypes. This is not available to antagonists and agonists where affinity and efficacy (in the case of agonists) are the determinants of relative receptor subtype selectivity.

The simplest mechanism depicting the simultaneous interactions of two ligands with a receptor is the allosteric ternary complex model ${ }^{13}$ (Figure 1) in which the affinity constant K_{x} of the binding of the ligand X to the primary site on the receptor R is modified by a factor α, the cooperativity factor, by the binding of the all osteric ligand L to the second site on the receptor. In a complementary manner, the affinity of L, K_{L}, is changed by the same factor α by the binding of X to the receptor. The cooperativity of the interaction of the two ligands with the receptor is defined by the factor α : if $\alpha>1$, there is positive cooperativity; if $\alpha<1$, there is negative cooperativity. F or the special case where $\alpha=$ 1, there is neutral cooperativity and the binding of L to R does not affect the binding of X. The binding, actions, and subtype selectivity of the allosteric ligand are therefore defined by two parameters: its affinity K_{L},
which is just dependent on the nature of R, and α, which depends on both R and X. The subtype selectivity and the pharmacological activity of L for modifying the action of X at different subtypes are therefore manifest by differences in either or both K_{L} and α.

Design of Novel Muscarinic Allosteric Agents

The first ligand shown to interact with the allosteric site on muscarinic receptors was gallamine 1,13,14 which

Gallamine (1)

Brucine (3)

Alcuronium (2)

N-Chloromethylbrucine (4)
exhibits an M_{2} selectivity as regards K_{L}. In equilibrium and kinetic studies gallamine obeyed the predictions of the allosteric ternary complex model. ${ }^{13}$ The α values were also found to be different (but all much less than 1) for the interaction between gallamine, and a variety of agonists and antagonists at a given subtype also differed for a given competitive ligand at different subtypes. ${ }^{13}$ A similar M_{2} selectivity to gallamine (as regards K_{L}) is exhibited by alcuronium 2, and it also shows a subtype selectivity in α, with positive cooperativity with the antagonist N-methylscopolamine (NMS) being found at M_{2} receptors but not at other subtypes. ${ }^{15}$

Ligands based around the structure of alcuronium or with flexible spacers between the two quaternary nitrogens have been investigated intensively. ${ }^{16-24}$ A number of these molecules are more potent than gallamine and alcuronium, especially under low ionic strength conditions. One such ligand, $\left[{ }^{3} \mathrm{H}\right]$-dimethyl $\mathrm{W}-84$, has been used to label an allosteric site on the M_{2} receptor. ${ }^{25}$

The quantitative analyses of the allosteric interactions in these studies have involved primarily the determination of the potency of the ligands in slowing down the dissociation rate of $\left[{ }^{3} \mathrm{H}\right]$-NMS from M_{2} receptors, i.e., the parameter αK_{L} where $X=$ NMS. However, because our aim is to develop allosteric molecules for eventual therapeutic use, it is important to estimate the two parameters that define their actions on the different receptor subtypes in vivo, namely, K_{L} and α, where X is the endogenous ligand ACh. The bis-onium ligands, where investigated, are strongly negatively cooperative with ACh at all subtypes.

The first ligands reported to exhibit positive cooperativity with ACh in binding and functional studies at one or more subtypes were brucine 3 and its quaternized derivatives. ${ }^{26-30}$ For this interesting series of compounds, subtype selectivity was primarily based on α (with ACh) and not K_{L}; for example, brucine is an

Figure 2. Side view (from the direction of the arrow) of the solution NMR structure of diasterioisomers 5 and 6.
allosteric enhancer at only M_{1} receptors, and N -chloromethylbrucine 4 is an enhancer at only M_{3} receptors. ${ }^{26,28,29}$
Our studies on the brucine analogues and also on a series of strychnine derivatives pointed to the fact that small changes in structure can produce large changes in cooperativity and subtype selectivity. ${ }^{28,30}$ However, the complex structures of strychnine and brucine were viewed as a major limitation in their use as a template for the development of allosteric muscarinic drugs. Subsequent screening of compounds with fused indole ring systems, structurally related to brucine, led to the discovery of other multicyclic agents with allosteric properties. Among these, the aminotetrahydroisoquinolinocarbazole 5 was our most interesting hit. ${ }^{31}$ This agent is more potent than brucine at all muscarinic receptor subtypes. In addition, 5 displays neutral or positive cooperativity with NMS at all subtypes and low negative cooperativity with ACh at $\mathrm{M}_{1}, \mathrm{M}_{3}$, and M_{4} receptors, but most interestingly, it has a 3-fold positive cooperativity with ACh at M_{2} receptors. ${ }^{31}$ This is the only well-characterized allosteric enhancer of ACh at M_{2} receptors identified to date. In contrast, its diastereoisomer 6 exhibits a 8-20-fold higher affinity at M_{1}, M_{3}, and M_{4} receptors but also has a high negative cooperativity with both NMS and ACh at all receptor subtypes. ${ }^{31}$

These stereoisomers have structures simpler than that of brucine and were regarded as suitable lead agents for the synthesis of more potent muscarinic allosteric agents. The reported solution NMR structures of 5 and 6 (Figure 2) have rings ABCD forming a rigid and an almost planar structure, with ring E perpendicular to this plane and in a chair conformation. ${ }^{31}$ The only difference between the two isomers is the spatial orientation of the exocyclic amino group relative to the pentacyclic ring system; the ami no group is equatorial in 5 and exists in the plane of the ABCD ring structure, whereas it is axial in 6 and approximately perpendicular to the ring system. One conclusion is that the spatial position of the amino group relative to the $A B C D$ ring plays a major role in the binding at unliganded and liganded receptors and consequently in their cooperativity with primary ligands.

On the basis of these observations, we designed an anal ogous pentacyclic ring system (7) that incorporates

Scheme 1. Intramolecular Cydization of 3-THPIs with Subsequent Debenzylation

the $A B C D$ ring structure of brucine and 5 but, in addition, offers the potential for locating the basic amino group in a variety of endo- and exocyclic positions. Ring E of 5 was eliminated (for ease of synthesis), and the compounds described in this paper do not contain stereocenters. This enabled both the nature and the spatial position of the amino group to be readily investigated in the anticipation that both affinity and cooperativity might be optimized. We synthesized several novel ring scaffol ds of type 7 (in which ring C was

(7)
both saturated and unsaturated), readily accessible by an intramolecular [4 +2$] \pi$ cycloaddition procedure of 1-substituted-3-(tetrahydropyridi nyl)indoles previously
reported. ${ }^{32}$ Taking into consideration the affinity and cooperativity of these ring systems and their relative ease of synthesis, the pentacyclic carbazol ones 22a and 23a were chosen as templates for the development of more potent allosteric agents. In this paper we present our data on the effect of ring substitution in 22a and 23a where the aim was to increase affinity while maintaining $\alpha>1$ or at least close to unity for the antagonist NMS and for ACh. A preliminary report of some of the findings has been presented. ${ }^{33}$

Chemistry

We previously described an efficient four-step synthetic route to a variety of pentacyclic carbazol ones via the intramolecular [4 + 2] π cycloaddition of 3-(tetrahydropyridinyl)indoles (THPIs). ${ }^{32}$ Following this procedure, we were able to prepare two series of pentacyclic carbazol ones 22a-aa and 23a-i, illustrated by Schemes 1 and 4 and incorporating a variety of substituents.

The prerequisite 3-THPIs 8a-s and $\mathbf{9 a}-\mathbf{f}$ were prepared from the one-step condensation of appropriately

Scheme 2

Scheme 3

substituted indole and N -benzylpiperidone under either acidic or basic conditions according to our previously published procedures. ${ }^{34}$ In the case of $\mathbf{8 k}$, the starting 5-morpholinomethylindole $\mathbf{1 2}$ was obtained from the LiAlH_{4} reduction of the corresponding amide 11, which in turn was prepared from the commercially available indole-5-carboxylic acid $\mathbf{1 0}$ according to Scheme 2.

Depending on the nature of R_{1} and R_{2} in the target molecules, the 3 -THPIs were acylated with the appropriate acid chlorides (13, 14, 16a, and 17) under anhydrous conditions to generate the Diels-Alder precursors 18a-v and 19a-h, using NaH as base. The synthesis of the hexynoyl chloride 16a, not previously described, was achieved starting from 15^{35} followed by subsequent reduction, acetylation, deprotection, and oxidation to yield 16, which was converted to 16a upon treatment with oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as illustrated in Scheme 3.

The thermal cyclization of the Diels-Alder precursors and the subsequent aromatization by loss of H_{2} could only be affected in diphenyl ether at elevated temperatures ($\sim 240^{\circ} \mathrm{C}$). This procedure furnished the cycloadducts 20a-z and 21a-i in good yields and usually free from impurities. Cyclization appeared to be unaffected
by the position or the nature of the substituents on the indole ring (diene) or on the acetylene moiety (dieneophile).

Removal of the benzyl group was achieved by catalytic hydrogenation of the Diels-Alder adducts, using 5\% Pd / C in MeOH at about $40^{\circ} \mathrm{C}$. This procedure worked well for most of the benzylated analogues (20 and 21), and good yields of the target ligands (22 and 23) were obtained. However, debenzylation of the 3-chlorosubstituted analogue $\mathbf{2 0 0}$ by catalytic hydrogenation al so resulted in extensive dechlorination of the molecule, and only poor yields of $\mathbf{2 2 p}$ were obtained. This problem was overcome for the other chloro-substituted analogues (e.g., 20d and 20i) by simply exchanging the protecting groups. Thus, reaction of $\mathbf{2 0 d}$ and $\mathbf{2 0 i}$ with vinyl chloroformate in THF followed by in situ acid hydrolysis of the corresponding carbamate intermediate furnished the debenzylated chloro-substituted analogues 22d and 22i in high yields as illustrated in Scheme 4.

The analogues incorporating a hydroxyl substituent (22c, 220, 22t, 22aa, and 23f) were obtained by the demethylation of the corresponding methoxy compounds (e.g., 20c, 20n, 20s, 20z, and 21f, respectively) using BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by hydrogenolysis to remove the benzyl group (Scheme 4). The methyl ester 22k was obtained by acid-catalyzed esterification of the corresponding carboxylic acid 22j in MeOH (Scheme 4).

Pharmacology. Radioligand Binding Assays and Data Analysis

The binding assays and analyses have been described previously. ${ }^{28,36,37}$ These provide estimates of the affinities of the allosteric compounds for the unliganded and NMS-liganded $\mathrm{M}_{1}-\mathrm{M}_{4}$ receptors (Table 1) together with the cooperativities of the ligands with NMS (shown symbolically in Table 2). Two types of experimental design were used: equilibrium assays to measure the effects of allosteric agents on the binding of ${ }^{3} \mathrm{H}-\mathrm{NMS}$ and ACh, and "off-rate" assays to measure the effects of the allosteric ligands on ${ }^{3} \mathrm{H}-\mathrm{NMS}$ dissociation. The experimental data were analyzed by nonlinear leastsquares analysis using equations derived from the allosteric ternary complex model (Figure 1). The compounds in both series in general exhibited Hill coefficients greater than 1 for their binding to both unliganded and NMS-liganded receptors. Possible explanations for this are discussed later under "Apparent Positive Cooperativity". Detailed descriptions of the methodology and the data analysis are provided in the Experimental Section and in Supporting Information. It should be noted that the binding measurements are made in a $\mathrm{Na} / \mathrm{Mg} / \mathrm{Hepes}$ buffer and not in a low ionic strength buffer where affinities of certain allosteric agents are considerably higher. ${ }^{18,38}$

Results and Discussion

The binding affinities of 36 substituted pentacyclic carbazol ones (22a-aa and 23a-i) at the free and NMSliganded human $M_{1}-M_{4}$ muscarinic receptors were measured using our "semiquantitative equilibrium" and "off-rate" assays and are listed in Table 1. The affinities of the ligands for the NMS-occupied receptor, estimated from the equilibrium and kinetic experiments, were in excellent agreement with each other; in only 3 out of

Scheme 4

140 possible comparisons were the differences greater than 3 -fold. Such a concordance is in agreement with the predictions of the allosteric ternary complex model if the equilibrium and kinetic measurements reflect the same binding processes. Because of their higher precision, the estimates of the affinity at the NMS-occupied receptor in Table 1 are those from the off-rate experiments.
As discussed earlier, the pentacyclic carbazol ones 22a and 23a were regarded as suitable all osteric templates for the development of more potent muscarinic allosteric agents. For our initial attempt, we chose to introduce a variety of substituents into all available positions of the indole ring (i.e., positions $1,2,3$, and 4). The choice of the substituents was largely dependent on the commercial availability of the starting indoles and included an array of hydrophilic, hydrophobic, and hydrogen bond donors and acceptors.

Effect of Substituents on Affinity at Free and NMS-Liganded $\mathbf{M}_{\mathbf{1}}-\mathbf{M}_{\mathbf{4}}$ Receptors. The unsubstituted pentacydic carbazol one 22a binds with the logarithm of the affinity of $4.6-5.5$ at free and NMSliganded muscarinic receptor subtypes. In general, the results from the substitution study reveal that addition of substituents to positions 1-4 of the carbazol one ring system gives rise to an increase in affinity at both free and NMS-liganded receptors for all subtypes. The only exception is the 2-morpholinoamido derivative (22I) where a small but consistent reduction of affinity at all subtypes is apparent.

At the unliganded M_{1} receptor the maximum increase in affinity for a single substituent is about 10 -fold and is found for the 1-OM e substituent (22b). A similar gain in affinity is observed at free and NMS-liganded $\mathrm{M}_{2}-$ M_{4} subtypes. Relocation of this group to positions 2, 3, and 4 (i.e., 22g, 22n, and 22s, respectively) has little effect or reduces affinity at all free and NMS-liganded subtypes with the 4 -position being the least tolerated. Further additions of methoxy groups (i.e., 22u and 22w) appear to have little further effect on affinity. The SAR
observed for the 1-OMe substituent is also generally true for the $1-\mathrm{OH}$ substitution (22c), although this agent binds with slightly lower affinity at most free and liganded $M_{2}-M_{4}$ subtypes.

Substitution with a Cl atom in the 1-position (22d) results in the highest gain in affinity achieved for a single substituent at free and liganded $M_{1}-M_{4}$ subtypes (with the exception of free M_{1} receptors). For example, the logarithm of the affinity at NMS-liganded M_{2} receptors is 7.1, a gain of over 40 -fold in affinity over 22a. Relocation of the Cl atom to the 2 - or 3 -position (22i and 22p) slightly lowers the affinity particularly at the free and NMS-liganded M_{3} and M_{4} subtypes. Introduction of an electron-withdrawing group such as a COOMe into the 1-position (22e) makes little difference to the overall binding of the molecule. However, relocation of this group to either the 2 - or 3-position (22k and 22q) increases affinity at all subtypes particularly at the unliganded receptors.

Other substituents such as a $2-\mathrm{Me}$ (22f) or 2,3methylenedioxy (22v) slightly enhance affinity, whereas 2-COOH (22j), 2-morpholinomethyl (22m), and 3-CN (22r) do not havesignificant effects on binding. The 2,3dimethoxy anal ogue 22u has good aqueous solubility and binds with moderate affinities. This agent was further functionalized with a methyl ester at the 8-position (i.e., 22x), but no improvement in affinity was observed. However, functionalization with an acetoxymethyl group (22y) at that position results in an increase in affinity (up to 5 -fold) at all free and NMSliganded subtypes. This agent 22y, with a logarithm of the affinity of 7.2 at NMS-liganded M_{2} receptors, is the most potent positive allosteric ligand in this series. Analogues 22b and 22c were both functionalized at the 7-position with methyl groups (i.e., $22 z$ and 22aa, respectively), but no gain in affinity was observed.

Compound 23a has an allosteric binding profile similar to that of its isomer 22a. The only difference in the two ring systems is the position of the basic endocyclic nitrogen atom, and that results in a slight
Table 1. Estimated Logarithm of the Affinities $\left(\log M^{-1}\right)$ of the Pentacyclic Carbazolones at the Free and NMS-Liganded Muscarinic $\left(M_{1}-M_{4}\right)$ Receptors

Σ^{N}
$\frac{\square}{\square}$

Σ

 0000000000000000000000000000000000

 0000000000000 + + H + + H H + H +

 000000000000000000000000000000000000 HHHHH+HHHHHHHHHHHHHHHHHHHHHHHHHHH+HH

 H
上

 H

 00000000000000000000000000000000000

U

$\underset{\sim}{\sim}$

 ${ }^{\text {a }}$ Data were limited by the small amounts of the material.

Table 2. Cooperativity of 22a-aa and 23a-i with NMS at $\mathrm{M}_{1}-\mathrm{M}_{4}$ Receptors ${ }^{\text {a }}$

compd	M_{1}	M_{2}	M_{3}	M_{4}
22a	+	+	-	+
22b	-	$+$	0	0
22c	++	++	0	++
22d	+	++	0	+
22e	-	+	-	-
22 f	-	$+$	-	+
22g	-	$+$	-	0
22h	++	++	++	++
22i	0	++	0	++
22j	-	++	-	++
22k	- -	0	-	
221	- -	++	- -	-
22m	-	$+$	-	0
22n	+	$+$	-	+
220	-	+	0	$+$
22p	+	+	0	++
22q	-	-	-	-
22r	-	-	-	0
22s	-	+	-	+
22t	-	+	-	-
22u	-	+	0	+
22v	-	$+$	-	-
22w	-	0	-	$+$
22x	-	+	-	$+$
22y	0	++	0	++
$22 z$	-	+	-	0
22aa	0	$+$	-	+
23a	-	+	-	+
23b	-	+	-	0
23c	0	+	0	+
23d	-	-	-	0
23e	0	$+$	-	+
23f		0	-	0
23g	$+$	++	+	++
23h	+	+	-	+
23i	-	-	-	-

${ }^{\text {a }}$ Cooperativity estimates are from the primary screens and the data in Table 1. Cooperativity values are as follows: (--) <0.2; $(-) 0.2-0.8 ;(0) 0.81-1.19 ;(+) 1.2-3 ;(++)>3$.
increase in affinity, particularly at unliganded M_{3} receptors. The effect of a small number of substituents in 23a was also examined. As with the first series, the majority of substituents incorporated led to an increase in the overall affinity of the molecule. Analogues incorporating the following substituents 2-MeO (23b), 2-OH (23c), 2-COOMe (23d), 3-MeO (23e), and $3-\mathrm{OH}$ (23f) exhibit binding affinities similar to those of their corresponding isomers (i.e., 22g, 22h, 22k, 22n, and $\mathbf{2 2 0}$ respectively). This provides a strong indication that the position of the basic nitrogen atom does not play a significant role in the binding of these molecules. Similarly, the 2,3-dimethoxy anal ogue $\mathbf{2 3 g}$ binds with almost equal affinities at the unliganded receptor subtypes compared to its isomer 22u, although at NMSliganded receptors, this agents displays higher affinities than 22u (up to 4 -fold). In contrast, functionalization of $\mathbf{2 3 g}$ with methyl groups at the 7 -position (i.e., 23i) increases affinity at the unliganded receptors with virtually no effect at NMS-liganded subtypes. Interestingly, addition of methyl groups at the 7-position of 23a (i.e., 23h) has little or no effect on muscarinic binding.

Subtype Selectivity. Affinity. In general, the pattern of affinity found for both series of compounds is $M_{2}>M_{1}>M_{4}>M_{3}$. However, none of the anal ogues discussed here exhibit significant selectivity for one
subtype versus all other subtypes. The only marginal exceptions are the $3-\mathrm{OH}$ substituted anal ogues $\mathbf{2 2 0}$ and 23f. These isomers display about a 10 -fold selectivity at M_{1} over the $M_{2}-M_{4}$ subtypes, although the observed selectivity is only apparent at the unliganded receptors.

Subtype Selectivity. Cooperativity with NMS. The pattern of occurrence of positive cooperativity is M_{2} $>M_{4}>M_{1}>M_{3}$, which is somewhat different from that observed for the subtype selectivity pattern of affinity. Most of the substituents examined give rise to positive cooperativity with NMS at M_{2} and M_{4} receptors. However, only a small number of substituents support positive cooperativity at the M_{1} and M_{3} subtypes (Table 2). Two compounds were positively cooperative with NMS at all subtypes, and two were negatively cooperative at all subtypes. Within this series of compounds there is an organization in the cooperativity pattern between subtypes. Compounds that are positive at M_{4} are positive at M_{2}. All compounds that are positive at M_{1} are positive at both M_{2} and M_{4}, and all compounds that are positive at M_{3} are positive at the other three subtypes. The only exception is the trisubstituted 22w, which is positive at M_{4} and neutral at M_{2}.

The magnitude and nature of the observed cooperativity also appear to be highly dependent on the ring position and electronic character of the substituents as well as on the receptor subtype. For example, electrondonating substituents such as a hydroxyl group in ring positions 1 and 2 (i.e., 22c and 22h, respectively) exhibit strong positive cooperativities at M_{1}, M_{2}, and M_{4} receptors, whereas the same substituent in the 3 - or 4 -position (i.e., $\mathbf{2 2 0}$ and 22t, respectively) manifest weak positive, neutral, or low negative cooperativities depending on the receptor subtype. Furthermore, electronwithdrawing substituents such as a methyl ester (22e, $\mathbf{2 2 k}$, and 22q) or a nitrile (22r) tend to mostly support negative cooperativities.

Subtype Selectivity. Cooperativity with ACh. All of the synthesized compounds inhibited the binding of ACh at all muscarinic receptor subtypes as assessed from our "semiquantitative equilibrium" binding assay.

The cooperativity of $(\mathbf{2 3 g})$ with $A C h$ at M_{1} receptors was estimated by a simultaneous analysis of $\mathrm{ACh} / \mathrm{H}$ NMS competition curves measured in the absence and presence of three concentrations of $\mathbf{2 3 g}$. The estimated value of the cooperativity with ACh $(0.10 \pm 0.01, \mathrm{n}=$ 2) indicated that $\mathbf{2 3 g}$ is not strongly negatively cooperative with ACh at this subtype. A comparable experiment with 22b at M_{1} receptors gave an α value versus ACh of 0.13 .

Apparent Positive Cooperativity. One interesting and distinguishing feature of this series of compounds is that in both the equilibrium and kinetic measurements the slope factors required to describe the interactions of the compounds with the receptors were greater than 1. A possible artifact that could give rise to such a phenomenon is the loss of the ligand by adsorption to the plastic tubes during dilution or in the assay or by depletion of the free ligand concentration by its partitioning into the membranes. Control experiments involving multiple transfers of dilutions between tubes and the measurement of the optical density of supernatants from binding assays, as well as the slope factors not being the same for different receptor subtypes,
excluded this possibility. At M_{1}, M_{2}, M_{3}, and M_{4} receptors, the slope factors in equilibrium studies were 1.70 $\pm 0.31,1.72 \pm 0.22,1.44 \pm 0.29$, and 1.76 ± 0.23 (mean \pm SD, $\mathrm{n}=36$), respectively, with an overall range of $0.9-2.2$. The equivalent slope factors estimated from the "off-rate" assays were $1.78 \pm 0.26,1.76 \pm 0.26,1.66 \pm$ 0.31 , and 1.77 ± 0.22 with an overall range of $1.0-2.4$. The data with slope factors greater than 2 could also be fitted satisfactorily if the slope factors were constrained to 2. The slopefactors at M_{3} receptors appeared to be lower than that at the other subtypes. An analogous result has been observed for the weaker ligand tacrine. ${ }^{39}$

Because the slope factors are greater than 1 for the ligands binding to the unoccupied and NMS-occupied receptors, it cannot be argued that the apparent positive cooperativity results from the ligands binding to both the allosteric site and the competitive site. One explanation is that the ligands are binding in a positively cooperative fashion to two different allosteric sites on muscarinic receptors. Indeed, it has recently been demonstrated that there are two allosteric sites on these receptors, ${ }^{12,37}$ and it could be possible, using the methods described, to test whether these ligands bind to both sites.

An alternative explanation is that muscarinic receptors can exist as dimers (or higher oligomers), ${ }^{40,41}$ and the binding of these allosteric ligands to its allosteric site on the receptor either modulates the extent of receptor dimerization or generates a positive homotropic interaction transmitted via the receptor-receptor interface. If this were to be true, then these molecules would have an action additional to their allosteric action at the competitive site. Such actions could have important repercussions on receptor function if the precise dimerization state of the receptor is crucial for receptor activation. Because agonist action and binding affinity are related to the induction or selection of a specific receptor conformation, one may speculate that the observed negative cooperativity between acetylcholine and the ligands described in this paper may be a consequence of their apparent (or real) positive homotropic cooperativity.

Summary and Conclusions

The existence of all osteric sites on muscarinic receptors raises the possibility of designing highly subtype selective ligands. This selectivity arises from two parameters: the binding affinity for the allosteric site and the cooperativity of interaction with the endogenous agonist. This latter parameter is not available to directly acting agonists and antagonists, where affinity orefficacy is the only determinant of relative receptor subtype selectivity. Subtype selective cooperativity with ACh has already been demonstrated for brucine and 5 in both binding and function. ${ }^{26,28,29,31}$ However, their low affinities for muscarinic receptors limit their usefulness as research tools. In an effort to develop high-affinity allosteric modulators of ACh, key pharmacophoric features in the lead molecules were identified and incorporated into simpler ring systems. We then probed different aromatic positions of these novel ring systems with a variety of substituents to delineate the receptor requirement for both affinity and cooperativity with competitive agents.

In this paper we have been able to demonstrate, through substitution effects, that both affinity and cooperativity with NMS can be altered substantially in a subtype-dependent manner. Notable compounds, in terms of affinity, are 22d, 22i, 22w ($M_{1}-M_{4}$), and 22y $\left(\mathrm{M}_{2}\right)$, and these suggest that high-affinity interactions at the allosteric site should be possible with molecules of relatively low molecular weight. In terms of receptor selectivity, 23f binds with a 10-fold higher affinity at unliganded M_{1} versus $M_{2}-M_{4}$ receptors, although this agent lacks a comparable selectivity at the NMSliganded receptors.

All of the agents are negatively cooperative with the neurotransmitter molecule acetylcholine, though the degree of negative cooperativity appears to be low. We have demonstrated that, through structural manipulation of an allosteric pharmacophore, negative cooperativity with NMS can be converted to positive cooperativity and vice versa. In principle, this should apply to any ligand, including ACh. Therefore, continued synthetic work with this series and other analogous multicyclic ring systems should enable the identification of agents with positive cooperativity with acetylcholine.

Experimental Section

General Methods. Starting materials were prepared according to literature procedures as indicated, and if no reference is quoted, they are available commercially. Anhydrous THF and MeOH were obtained according to the procedures described by Perrin and Armarego. ${ }^{42}$ In the text, petrol refers to petroleum ether ($80-100{ }^{\circ} \mathrm{C}$) and ammonia refers to concentrated ammonia ($\mathrm{d}=0.88$). All reactions were carried out under a slow stream of argon unless otherwise stated. Melting points (mp) were carried out in open capillaries on an Electrothermal digital melting point apparatus (model IA9100) and are uncorrected. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AM 400 WB spectrometer using the facilities at the MRC Biomedical NMR Centre, National Institute for Medical Research, Mill Hill. Chemical shifts are reported in ppm downfield of internal tetramethylsilane (TMS) or 3-(trimethylsilyl)propionic-2,2,3,3-d ${ }_{4}$ acid, sodium salt (TSP) as indicated. Mass spectra were run by fast-atom bombardment on a VG Analytical ZAB-SE double-focusing magnetic sector mass spectrometer. Elemental analyses were performed by the microanalytical section of the Department of Chemistry, University College London, and were within $\pm 0.4 \%$ of the calculated values. Column chromatography was carried out on Merck silica gel 60 (70-230 mesh ASTM).

5-Morpholinomethyl-3-(1-benzyl-1,2,3,6-tetrahydropy-ridin-4-yl)-1H-indole (8k). A solution of indole-5-carboxylic acid $\mathbf{1 0}$ ($7.2 \mathrm{~g}, 44.7 \mathrm{mmol}$) in THF (250 mL) containing oxalyl chloride ($11.3 \mathrm{~g}, 89.3 \mathrm{mmol}$) was stirred at room temperature for 10 h . The reaction mixture was taken to dryness in vacuo, and the residue was redissolved in anhydrous THF (100 mL) and cooled to $5^{\circ} \mathrm{C}$. A solution of morpholine ($7.8 \mathrm{~g}, 89.3 \mathrm{mmol}$) in THF (50 mL) was added, and the mixture was stirred at room temperature for 1 h . The mixture was filtered and the filtrate taken to dryness. The residue was partitioned between EtOAc and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and taken to dryness in vacuo to yield 11 as a white solid ($3.0 \mathrm{~g}, 28 \%$, yield not maximized). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) δ $3.52(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~m}, 4 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=1.6$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 11.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

A suspension of $\mathrm{LiAlH}_{4}(0.93 \mathrm{~g}, 24.5 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ was added to a solution of $\mathbf{1 1}(1.87 \mathrm{~g}, 8.1 \mathrm{mmol})$ in THF (125 mL) and refluxed for 3 h . The mixture was cool ed to $0^{\circ} \mathrm{C}$, and wet EtOAc (10 mL) was added. The mixture was filtered and then taken to dryness. The resulting residue was stirred in dilute HCl . The aqueous layer was filtered, made alkaline with dilute $\mathrm{K}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer
was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to give $\mathbf{1 2}$ as a white solid ($1.1 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.47(\mathrm{t}, \mathrm{J}=4.5$ $\mathrm{Hz}, 4 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.51(\mathrm{~m}, 1 \mathrm{H})$, $7.18(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$.

A solution of $\mathbf{1 2}$ ($1.08 \mathrm{~g}, 5 \mathrm{mmol}$), 1-benzyl-4-piperidone (2.84 $\mathrm{g}, 15 \mathrm{mmol}$), and sodium methoxide ($1.62 \mathrm{~g}, 30 \mathrm{mmol}$) in anhydrous methanol (75 mL) was refluxed under argon for 48 h. The reaction mixture partioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic layer was separated and taken to dryness. The resulting residue was warmed in $10 \% \mathrm{MeOH}$ in EtOAc (50 mL). Ether was added until precipitation occurred. The product $\mathbf{8 k}$ was collected by filtration and dried in vacuo ($0.80 \mathrm{~g}, 41 \%$, yield not maximized):

Preparation of Acid Chloride 16a. A 1.0 M solution of diisobutylaluminum hydride in hexane (20 mL) was added dropwise to a solution of $15(2.26 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23$ mL) at $-70^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . The mixture was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and removed under reduced pressure. The resulting alcohol was dissolved in THF (20 mL) and cooled to $0^{\circ} \mathrm{C}$, and triethylamine $(1.2 \mathrm{~g}, 12 \mathrm{mmol})$ and acetyl chloride ($0.86 \mathrm{~g}, 11 \mathrm{mmol}$) were added successively. The solution was stirred for 30 min , diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. The organic layer was washed with aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and removed under reduced pressure. The product was dissolved in EtOH $(200 \mathrm{~mL})$) containing pyridinium p-tol uenesulfonate ($0.3 \mathrm{~g}, 1.2$ mmol), and the mixture was stirred at $45^{\circ} \mathrm{C}$ for 3 h . The solution was concentrated under reduced pressure and chromatographed on silica, eluting with a mixture of EtOAc/petrol (1:1). The free al cohol, obtained as a col orless oil, was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. A solution of DMSO ($1.47 \mathrm{~g}, 19 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to a 2 M solution of oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.2 \mathrm{~mL})$ at $-75^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . This was then added to the previous solution, and the mixture was stirred at $-75{ }^{\circ} \mathrm{C}$ for 30 min and then at $-45^{\circ} \mathrm{C}$ for 40 min and then cooled back to $-75{ }^{\circ} \mathrm{C}$ before $\mathrm{Et}_{3} \mathrm{~N}$ (7.5 $\mathrm{mL}, 53 \mathrm{mmol}$) was added. The mixture was then allowed to reach room temperature over a period of 1 h and then was diluted with a mixture of EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed successively with dilute $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, and aqueous NaHCO_{3}, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The resulting aldehyde was dissolved in tBuOH (20 mL) containing 2-methyl-2-butene ($2.5 \mathrm{~g}, 35.5$ $\mathrm{mmol})$ and was added to a solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(1.11 \mathrm{~g}$, 7.1 mmol) in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. This was cooled to $\sim 10^{\circ} \mathrm{C}$, and $\mathrm{NaClO}_{2}(0.83 \mathrm{~g}, 9.23 \mathrm{mmol})$ was added in portions over a period of 10 min . The mixture was stirred at room temperature for 30 min , acidified with dilute HCl , and extracted with EtOAc. The organic layer was taken to dryness, and the residue was chromatographed on silica, eluting with EtOAc/petrol (1:1) to give the acid 16 as a col orless oil that crystallized on cooling in the fridge ($1.18 \mathrm{~g}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.09$ $(\mathrm{s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 4 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H})$.
To a cold solution of $\mathbf{1 6}(1.15 \mathrm{~g}, 6.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was added a 2 M solution of oxalyl chloride ($4.05 \mathrm{~mL}, 8.1$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was stirred at room temperature for 18 h and refluxed for a further hour. The sol vent was removed, and the crude residue was distilled, collecting 16a as the fraction boiling at $124-125^{\circ} \mathrm{C}$ and $5 \mathrm{mmHg}(0.65 \mathrm{~g}$, 51\%).

General Procedure for the Acylation of 3-(1-Benzyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles. A suspension of sodium hydride ($60 \% \mathrm{w} / \mathrm{v}$ dispersion in mineral oil, 32 mmol) in THF (30 mL) was added to a cold solution of 3-(tetrahydropyridinyl)indole (30 mmol) in THF (300 mL). The mixture was stirred at room temperature for 1 h and then cooled to $0-5$ ${ }^{\circ} \mathrm{C}$. A solution of the appropriate acid chloride (32 mmol) in THF (70 mL) was then added dropwise, and the resulting mixture was allowed to stir at room temperature for 2 h . The mixture was concentrated to about a half of its original volume and then acidified with 2 N hydrochloric acid. Unless otherwise stated, the resulting white precipitate was col lected by filtra-
tion, washed successively with THF, $\mathrm{H}_{2} \mathrm{O}$, and ether, and if necessary recrystallized as stated. Compounds 18a-v and 19a-h were synthesized following the above procedure for acylation.

1-(4-Pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydropyridin-4-yl)indole Hydrochloride (18a). 18a was prepared from the reaction of $\mathbf{8 a}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 76%; mp $263-265{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 2.61(\mathrm{td}, \mathrm{J}=6.8$ and $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.29(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 6.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 5 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$.

4-Methoxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-4-yl)indole Hydrochloride (18b). 18b was prepared from the reaction of $\mathbf{8 b}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 73\%; ${ }^{13}$ NMR (DMSO-d ${ }_{6} /$ $\mathrm{D}_{2} \mathrm{O}$, TSP-salt, 338 K$) \delta 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}$ $=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 5 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$.

4-Chloro-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-4-yl)indole Hydrochloride (18c). 18c was prepared from the reaction of $\mathbf{8 c}$ and 13 according to the general acylation procedure. Yield 83\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/{ }_{6} / \mathrm{D}_{2} \mathrm{O}$, TSPsalt, 343 K) $\delta 2.60(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{td}, \mathrm{J}=2.6$ and $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}$, $\mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H})$, $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~m}, 5 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, 1H).

Methyl 1-(4-Pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydro-pyridin-4-yl)indole-4-carboxylate Hydrochloride (18d). 18d was prepared from the reaction of 8d and $\mathbf{1 3}$ according to the general acylation procedure. Yield 58\%; ${ }^{1} \mathrm{H}$ NMR (DMSO$\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 333 K) $\delta 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{t}$, $\mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.78(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.92(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 5.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.49-7.63(\mathrm{~m}, 6 \mathrm{H})$, 7.63 (dd, J $=1$ and $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.91 (s, 1H), 8.66 (dd, J = 1 and $7.6 \mathrm{~Hz}, 1 \mathrm{H}$).

5-Methyl-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-4-yl)indole Hydrochloride (18e). 18e was prepared from the reaction of $\mathbf{8 e}$ and $\mathbf{1 3}$ according to the general acylation procedure. Recrystallized from MeOH ; yield 75\%; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 333 K) δ 2.54-2.64 (m, 3H), 2.85 (br s, 2H), $3.24(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.42(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 3.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 6.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.25 (d, J $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.84$ ($\mathrm{s}, 1 \mathrm{H}$), $8.29(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Methoxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-4-yl)indole Hydrochloride (18f). 18f was prepared from the reaction of $\mathbf{8 f}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 89\%; ${ }^{13} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$) δ 2.61 (td, J $=2.4$ and $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.68(\mathrm{tJ}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (br s, 2H), $3.25(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 6.31(\mathrm{br} \mathrm{s} 1 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=2.3$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.57(\mathrm{~m}, 5 \mathrm{H})$, $7.91(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Benzyloxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-4-yl)indole Hydrochloride (18g). 18g was prepared from the reaction of $\mathbf{8 g}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 76\%; ${ }^{13} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 2.61(\mathrm{td}, \mathrm{J}=2.4$ and $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t} \mathrm{J}=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83$ (br s, 2H), $3.24(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 6.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.11$ (dd, J = 2.2 and $9.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34-7.58(\mathrm{~m}, 11 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H})$, 8.33 (d, J $=9.1 \mathrm{~Hz}, 1 \mathrm{H}$).

5-Chloro-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-4-yl)indole Hydrochloride (18h). 18h was prepared from the reaction of $\mathbf{8 h}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 87\%; ${ }^{13}$ NMR (DMSO-d ${ }_{6}$ $\mathrm{D}_{2} \mathrm{O}$, TSP-salt, 333 K$) \delta 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 3.28(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $4.41(\mathrm{~s}, 2 \mathrm{H}), 6.27$ (br s, 1H), 7.44 (dd, J $=1.8$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}$),
$7.51-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 8.43$ $(\mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H})$

Benzyl 1-(4-Pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydro-pyridin-4-yl)indole-5-carboxylate Hydrochloride (18i). 18i was prepared from the reaction of 8 i and 13 according to the general acylation procedure. Yield 75\%; ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 2.61-2.65(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.29(\mathrm{t}, \mathrm{J}=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 6.31(\mathrm{br} \mathrm{s}$ $1 \mathrm{H}), 7.33-7.58(\mathrm{~m}, 10 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$ $1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$.
5-Morpholinocarbonyl-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydropyridin-4-yl)indole (18j). 18j was prepared from the reaction of $\mathbf{8 j}$ and $\mathbf{1 3}$ according to the general acylation procedure. The reaction mixture was made alkaline with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with EtOAc. The organic layer was taken to dryness to give 18j as a light-brown gum in quantitative yield: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.05(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}$, 1 H), 2.58 (br s, 2H), 2.73 (m, 4H), $3.18(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H})$, $3.65(\mathrm{~s}, 2 \mathrm{H}), 3.4-3.8(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 6.28(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.42(\mathrm{~m}$ $7 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Morpholinomethyl-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydropyridin-4-yl)indole Dihydrochloride (18k). 18k was prepared from the reaction of $\mathbf{8 k}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 76\%; ${ }^{1}$ H NMR (DMSO$\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 333 K) $\delta 2.59$ (m, 3H), 2.91 (br s, 2H), 3.09 (br s, 4H), $3.31(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.51 (br s, 2H), 3.81 (br s, 4 H), 3.88 (br s, 2H), 4.29 (s, 2H), 4.42 (s, 2H), 6.36 (br s, 1H), $7.49-7.63(\mathrm{~m}, 6 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}, \mathrm{~J}=8.9$ $\mathrm{Hz}, 1 \mathrm{H})$.

6-Methoxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-4-yl)indole (181). $\mathbf{1 8 1}$ was prepared from the reaction of $\mathbf{8 1}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 82\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.04(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}$ $1 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 2.70-276(\mathrm{~m}, 4 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.23(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.26(\mathrm{~m}, 1 \mathrm{H}), 6.91$ (dd, $\mathrm{J}=2.5$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.66$ $(\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H})$.
6-Chloro-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-4-yl)indole Hydrochloride (18m). 18m was prepared from the reaction of $\mathbf{8 m}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 83\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d 6 $\mathrm{D}_{2} \mathrm{O}$, TSP-salt, 333 K) $\delta 2.60(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{td}, \mathrm{J}=$ 2.6 and $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.48(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 6.27(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.41$ (dd, J $=2.0$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 5 \mathrm{H}), 7.86(\mathrm{~m}$, 2 H), 8.44 ($\mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}$).
Methyl 1-(4-Pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydro-pyridin-4-yl)indole-6-carboxylate Hydrochloride (18n). $\mathbf{1 8 n}$ was prepared from the reaction of $\mathbf{8 n}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 83\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 333 K) $\delta 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 2 \mathrm{H})$, 2.91 (br s, 2H), 3.29 (t, J = $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.90 (br s, 2H), 3.92 $(\mathrm{s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 6.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.52-7.63$ (m, 5H), 7.95-8.04 (m, 2H), $8.09(\mathrm{~s}, 1 \mathrm{H}), 9.05(\mathrm{~s}, 1 \mathrm{H})$.

6-Cyano-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydro-pyridin-4-yl)indole Hydrochloride (180)?? 180 was prepared from the reaction of $\mathbf{8 0}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 72\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/{ }_{6} / \mathrm{D}_{2} \mathrm{O}$, TSPsalt, 343 K$) \delta 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{td}, \mathrm{J}=2.5$ and $6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.60(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~m}$, $5 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 1H), 8.74 (s, 1H).

7-Methoxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-4-yl)indole Hydrochloride (18p). 18p was prepared from the reaction of $\mathbf{8 p}$ and $\mathbf{1 3}$ according to the general acylation procedure. The product was recrystallized from a mixture of $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$. Yield 48% (not maximized); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{d}_{2} \mathrm{O}$, TSP-salt, 333 K$) \delta 2.56-2.62(\mathrm{~m}, 3 \mathrm{H})$, 2.83 (br s, 2H), 3.23 (m, 2H), 3.43 (br s, 2H), 3.83 (br s, 2H), $3.92(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 6.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-$ $7.60(\mathrm{~m}, 5 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$.

5,6-Dimethoxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tet-rahydropyridin-4-yl)indole Hydrochloride (18q). 18q was prepared from the reaction of $\mathbf{8 q}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 80\%; ${ }^{13}$ NMR (DMSO-d ${ }^{2}$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 2.61(\mathrm{td}, \mathrm{J}=2.5$ and $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t} \mathrm{J}=2.5 \mathrm{~Hz}$, 1 H), $2.84(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 3.63$ $(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 6.32(\mathrm{~m} 1 \mathrm{H})$, $7.30(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 5 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H})$.
5,6-Methylenedioxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydropyridin-4-yl)indole (18r). 18r was prepared from the reaction of $8 r$ and 13 according to the general acylation procedure and that described for $\mathbf{1 8 j}$. Yield 80%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.03(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.68-$ $2.76(\mathrm{~m}, 4 \mathrm{H}), 3.13(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}$, $2 \mathrm{H}), 6.00(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.26-$ $7.41(\mathrm{~m}, 5 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H})$.
5,6,7-Trimethoxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydropyridin-4-yl)indole (18s). 18s was prepared from the reaction of $8 \mathbf{s}$ and 13 according to the general acylation procedure and that described for 18j. Yield 89\%; ${ }^{1} \mathrm{H}$ NMR (HCl salt, DMSO-d $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 338 K) $\delta 2.50$ (t , J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, 2 H), 3.27 (t, J $=5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.63(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.52(\mathrm{~m}$, $6 \mathrm{H}), 7.90$ (s, 1H).

5,6-Dimethoxy-1-(5-methoxycarbonyl-4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydropyridin-4-yl)indole (18t). 18t was prepared from the reaction of $\mathbf{8 q}$ and $\mathbf{1 4}$ according to the general acylation procedure. The reaction mixture was partitioned between EtOAc and aqueous NaHCO_{3}. The organic layer was taken to dryness, and the resulting residue was chromatographed on silica, eluting with EtOAc to give the pure product as a white powder in 18% yield (not maximized). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.56(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.19-3.25(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 6.21(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}$, 1H), $7.27-7.41(\mathrm{~m}, 5 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H})$.
5,6-Dimethoxy-1-(6-acetoxy-4-hexynoyl)-3-(1-benzyl-1,2,5,6-tetrahydropyridin-4-yl)indole (18u). 18u was prepared from the reaction of $\mathbf{8 q}$ and $\mathbf{1 6 a}$ according to the general acylation procedure. The reaction mixture was partitioned between EtOAc and aqueous NaHCO_{3}. The organic layer was concentrated, and the resulting white precipitate was collected by filtration, Yield 17% (not maximized); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.5-2.9(\mathrm{br}, 2 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{t}, \mathrm{J}=7.3$ Hz, 2H), 3.2-3.8 (br, 4H), 3.93 (s, 3H), 3.96 (s, 3H), 4.1-4.5 $(\mathrm{m}, 2 \mathrm{H}), 4.66(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H})$, $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.71(\mathrm{~m}, 5 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H})$.
4-Methoxy-1-(3,3-dimethyl-4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydropyridin-4-yl)indole (18v). 18 v was prepared from the reaction of $\mathbf{8 b}$ and $\mathbf{1 7}$ according to the general acylation procedure. Yield 46\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47$ (s, $6 \mathrm{H}), 2.14(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.00$ (s, 2H), 3.17 (m, 2H), 3.67 (s, 2H), $3.89(\mathrm{~s}, 3 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H})$, $6.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.41(\mathrm{~m}, 7 \mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}=8.0$ Hz, 1H).

1-(4-Pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydropyridin-3-yl)indole Hydrochloride (19a). 19a was prepared from the reaction of $\mathbf{9 a}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 76%; mp $226-227^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 2.60-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{~m}$, $1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.57$ $(\mathrm{m}, 5 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 1H).

5-Methoxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-3-yl)indole Hydrochloride (19b). 19b was prepared from the reaction of $\mathbf{9 b}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 78\%; ${ }^{13} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 2.57(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.66(\mathrm{~m}, 4 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.7(\mathrm{br}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H})$, $4.48(\mathrm{~s}, 2 \mathrm{H}), 6.49(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{dd}, \mathrm{t}, \mathrm{J}=2.2$ and $9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.60(\mathrm{~m}, 5 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 8.32$ $(\mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Benzyloxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-3-yl)indole Hydrochloride (19c). 19c was pre pared from the reaction of 9 c and $\mathbf{1 3}$ according to the general acylation procedure. Yield 65\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{d}_{2} \mathrm{O}\right) ~ \delta$ $2.59-2.65(\mathrm{~m}, 5 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $4.05(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{dd}$, $\mathrm{t}, \mathrm{J}=2.2$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.58$ $(\mathrm{m}, 10 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl 1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahydro-pyridin-3-yl)indole Carboxylate (19d). 19d was prepared from the reaction of 9d and $\mathbf{1 3}$ according to the general acylation procedure and as described for 18j. Recrystallized from a mixture of EtOAc/n-hexane; yield 49\%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 2.03(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.75(\mathrm{~m}, 4 \mathrm{H})$, $3.16(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 6.38(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.42(\mathrm{~m}, 6 \mathrm{H}), 8.05(\mathrm{dd}, \mathrm{J}=1.5$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$.

6-Methoxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-3-yl)indole (19e). 19e was prepared from the reaction of $9 e$ and 13 according to the general acylation procedure and that described for 18j. Yield 68%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.03(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=$ $5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{td}, \mathrm{J}=2.6$ and $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.31(\mathrm{~m}, 1 \mathrm{H})$, 6.92 (dd, J $=2.4$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.42(\mathrm{~m}$, $5 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.

5,6-Dimethoxy-1-(4-pentynoyl)-3-(1-benzyl-1,2,5,6-tet-rahydropyridin-3-yl)indole Hydrochloride (19f). $19 f$ was prepared from the reaction of $\mathbf{9 f}$ and $\mathbf{1 3}$ according to the general acylation procedure. Yield 73%; ${ }^{13}$ NMR (DMSO-d ${ }_{6}$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 2.6-2.7(\mathrm{~m}, 5 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H})$, 6.48 (br s, 1H), 7.22 (s, 1H), 7.5-7.6 (m, 5H), 7.67 (s, 1H), 8.06 (s, 1H).

1-(3,3-Dimethyl-4-pentynoyl)-3-(1-benzyl-1,2,5,6-tetrahy-dropyridin-3-yl)indole Hydrochloride (19g). 19g was prepared from the reaction of 9 a and 17 according to the general acylation procedure. Yield 86\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 1.40(\mathrm{~s}, 6 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H})$, 3.38 (br s, 2H), $4.01(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 6.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.39-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$.

5,6-Dimethoxy-1-(3,3-dimethyl-4-pentynoyl)-3-(1-ben-zyl-1,2,5,6-tetrahydropyridin-3-yl)indole Hydrochloride (19h). 19h was prepared from the reaction of $9 f$ and 17 according to the general acylation procedure. Yield 57%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{d}_{2} \mathrm{O}\right) \delta 1.40(\mathrm{~s}, 6 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H})$, 3.13 (s, 2H), 3.32 (br s, 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}$), $4.40(\mathrm{~s}, 2 \mathrm{H}), 6.47$ (br s, 1H), 7.5-7.6 (m, 5H), 7.69 (s, $1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$.
General Procedure for Intramolecular Diels-Alder Reactions. The Diels-Alder precursor (0.01 mol) was suspended in di phenyl ether (400 mL) at $230-240^{\circ} \mathrm{C}$ for about 2 h or until the starting material was fully consumed under a slow stream of argon gas. The solution was cooled to room temperature, and unless otherwise stated, ether containing hydrogen chloride was added until precipitation occurred. The resulting precipitate was collected by filtration, washed exhaustively with ether, and dried in vacuo. Thefollowing DielsAlder adducts 20a-z and 21a-i were synthesized using the above procedure for cyclization.

11-Benzyl-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4c:1', $\left.\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one (20a). Diphenyl ether was removed in vacuo, and the resulting residue was chromatographed on silica, eluting with EtOAc/toluene (1:1) to give 20a as a white crystalline solid in 56% yield. $\mathrm{Mp} 126-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.93(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $4 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$.

11-Benzyl-1-methoxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', $\mathbf{2}^{\mathbf{2}}, \mathbf{3}^{\mathbf{\prime}} \mathrm{Im}$]carbazol-6-one Hydrochloride (20b). Yield $\sim 50 \%$ (not maximized); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSPsalt, 343 K) $\delta 3.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.61(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 4 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 7.00$ $(\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-$ $7.61(\mathrm{~m}, 5 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.

11-Benzyl-1-hydroxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1',2, $\mathbf{3}^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrobromide (20c). A solution of 1 N BBr 3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ was added with stirring to a cold solution of $\mathbf{2 0 b}(0.8 \mathrm{~g}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ mL) under a slow stream of Ar. The reaction mixture was allowed to stir at room temperature for 8 h and then cool ed to $0{ }^{\circ} \mathrm{C}$ and carefully diluted with MeOH . The mixture was heated at $50^{\circ} \mathrm{C}$ for 15 min , cooled, filtered, and concentrated, and if necessary, ether was added until preci pitation occurred. The resulting light-brown precipitate was collected by filtration and dried in vacuo ($0.48 \mathrm{~g}, 52 \%$).

11-Benzyl-1-chloro-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', $\left.\mathbf{2}^{2}, 3^{-1 m}\right]$ carbazol-6-one Hydrochloride (20d). Recrystallized from MeOH ; yield 83\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $6 /$ $\mathrm{D}_{2} \mathrm{O}$, TSP-salt, 333 K) $\delta 3.03(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.95(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}$, $2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.64(\mathrm{~m}, 7 \mathrm{H}), 8.60(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$).

Methyl 11-Benzyl-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', $\mathbf{2}^{\prime}, 3^{\prime}$-Im]carbazol-6-one-1-carboxylate Hydrochloride (20e). Yield 80\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d/d $\mathrm{D}_{2} \mathrm{O}$, TSP-salt, $313 \mathrm{~K}) \delta 3.05(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.28(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.56 (br s, 2H), 3.98 (s, 3H), $4.50(\mathrm{~s}, 2 \mathrm{H}), 4.51$ (s, $2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.63(\mathrm{~m}, 6 \mathrm{H}), 7.69(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.69 (d, J $=8 \mathrm{~Hz}, 1 \mathrm{H}$).

11-Benzyl-2-methyl-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c: $1^{\prime}, \mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (20f). Yield 63\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{d}_{2} \mathrm{O}$, TSP-salt, 333 K) $\delta 3.01$ $(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H})$, $4.48(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.63$ $(\mathrm{m}, 5 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$.

11-Benzyl-2-methoxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c: $\left.1^{\prime}, 2^{2}, 3^{-}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (20g). Yield >95\%; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 2.99(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.64(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}$ $=2.2$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.60(\mathrm{~m}$, $5 \mathrm{H}), 8.33(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$.

11-Benzyl-2-benzyloxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c:1',2,3'-Im]carbazol-6-one hydrochloride (20h). Yield 92\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 2.98(\mathrm{t}$, $\mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.63(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.28$ (dd, J = 1.8 and $8.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36-7.61(\mathrm{~m}, 11 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}$).

11-Benzyl-2-cholro-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c: $\left.\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, 3^{\prime}-\mathrm{lm}\right]$ carbazol-6-one Hydrochloride (20i). Yield 60\% (not maximized); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSP-salt, $333 \mathrm{~K}) \delta 3.04(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.59$ (br s, 2H), $3.65(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 7.22(\mathrm{~s}$, $1 \mathrm{H}), 7.51-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.63(\mathrm{dd}, \mathrm{J}=2.0$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 8.09 (d, J $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H})$.

Benzyl 11-Benzyl-2-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', $\left.\mathbf{2}^{2}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one-2-carboxylate Hydrochloride (20j). Yield 94\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{D}_{2} \mathrm{O}$) $\delta 3.04$ (t, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.90(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.63(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}$, $\mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.39-$ $7.62(\mathrm{~m}, 7 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, 1H), 8.61 (s, 1H).

11-Benzyl-2-morpholinocarbonyl-7,8,10,11,12,13-hexahy-dro-6H-dipyrido[3,4-c:1', $2^{\prime}, 3^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (20k). Yield >95\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d/ $/ \mathrm{D}_{2} \mathrm{O}$) $\delta 3.06$ $(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.64$ $(\mathrm{m}, 6 \mathrm{H}), 3.79(\mathrm{~m}, 4 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H})$, $7.48-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.51$ (d, J $=9 \mathrm{~Hz}, 1 \mathrm{H}$).

11-Benzyl-2-morpholinomethyl-7,8,10,11,12,13-hexahy-dro-6H-dipyrido[3,4-c:1', 2, 3^{-}-Im]carbazol-6-one Dihydrochloride (201). Yield 85\%; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSP-salt,
$333 \mathrm{~K}) \delta 3.05(\mathrm{~m}, 4 \mathrm{H}), 3.28(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$ 3.81 (br s, 4H), 3.92 (br s, 4H), 4.31 (br s, 2H), 4.40 (br s, 2H), $4.42(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$.

11-Benzyl-3-methoxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c: $\left.1^{\prime}, \mathbf{2}^{2}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (20m). Recrystallized from MeOH ; yield 62%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ $\mathrm{D}_{2} \mathrm{O}$) $\delta 3.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.52$ (br s, 2H), 3.63 (br s, 2H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}$, $2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=2.5$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.62$ $(\mathrm{m}, 5 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$.

11-Benzyl-3-hydroxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', $\left.\mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrobromide (20n). 20n was prepared as described for 20c, starting with 20m. Recrystallized from MeOH ; yield 83\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 2.99(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.51$ (br s, 2H), 3.65 (br s, 2H), $4.44(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 6.95$ (dd $\mathrm{J}=0.9$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.89$ $(\mathrm{d}, \mathrm{J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$

11-Benzyl-3-chloro-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', $\left.\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (200). Recrystallized from MeOH ; yield 81\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ $\mathrm{D}_{2} \mathrm{O}$, TSP-salt, 323 K) $\delta 3.04(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.44(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.62(\mathrm{~m}, 6 \mathrm{H}), 8.08$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})$
Methyl 11-Benzyl-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1',2 ,3'-Im]carbazol-6-one-3-carboxylate Hydrochloride (20p). Y ield 80\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSP-salt, $333 \mathrm{~K}) \delta 2.92(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.26$ $(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.76$ (s, 2H), 3.96 (s, 3H), $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.46(\mathrm{~m}, 5 \mathrm{H}), 8.08$ (dd, $\mathrm{J}=1.5$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.05(\mathrm{~d}, \mathrm{~J}=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}$).

11-Benzyl-3-cyano-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', 2, 3'-Im]carbazol-6-one Hydrochloride (20q). Recrystallized from MeOH ; yield 75%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ $\mathrm{D}_{2} \mathrm{O}$, TSP-salt, 323 K) $\delta 3.06$ (t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.29(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.46(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.83$ $(\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H})$.
11-Benzyl-4-methoxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1',2, 3'-Im]carbazol-6-one Hydrochloride (20r) Yield 73\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 343 K) $\delta 3.03$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.64(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~s}$, $1 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=$ 8.0 Hz, 1H).

11-Benzyl-4-hydroxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', $\left.\mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrobromide (20s). 20s was prepared as described for 20c, starting with $\mathbf{2 0}$. Yield 75%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 323 K) $\delta 3.11$ (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.23(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.80(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ $(\mathrm{s}, 1 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 6 \mathrm{H})$.

11-Benzyl-2,3-dimethoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c:1', 2,3'-Im]carbazol-6-one Hydrochloride (20t). Yield 91\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 343 K) $\delta 3.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 3.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H})$, $4.49(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.99$ (s, 1H).

11-Benzyl-2,3-methylenedioxy-7,8,10,11,12,13-hexahy-dro-6H-dipyrido[3,4-c:1', $\mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (20u). Yield 81\%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$) $\delta 2.99$ (t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.20(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{~s}$ 1H), 7.53-7.61 (m, 5H), $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H})$.

11-Benzyl-1,2,3-trimethoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c:1', 2, 3'-Im]carbazol-6-one Hydrochloride (20v). Yield 36\% (not maximized); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ $\mathrm{D}_{2} \mathrm{O}$, TSP-salt, 318 K) $\delta 3.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.21(\mathrm{t}$, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.00$
$(\mathrm{s}, 3 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.62(\mathrm{~m}$, 5H), 7.97 (s, 1H).

Methyl 11-Benzyl-2,3-dimethoxy-7,8,10,11,12,13-hexahy-dro-6H-dipyrido[3,4-c:1',2 $\mathbf{2}^{\prime} \mathbf{3}^{\prime}-\mathrm{Im}$]carbazol-6-one-9-carboxylate (20w). Yield 41\% (not maximized); ${ }^{1 H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $2.88(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.45$ (s, 1H), 8.17 (s, 1H).

11-Benzyl-9-acetoxymethyl-2,3-dimethoxy-7,8,10,11,-12,13-hexahydro-6H-di pyrido[3,4-c:1', $\mathbf{2}^{\prime}$,3'-Im]carbazol-6one hydrochloride (20x). Yield 66\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6} /$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 1.94(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$, $4.49(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 7.54-7.8(\mathrm{~m}, 6 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H})$.

11-Benzyl-8,8-dimethyl-1-methoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c:1',2,3'-Im]carbazol-6-one Hydrochloride (20y). Yield 85\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{D}_{2} \mathrm{O}$) $\delta 1.36$ (s, 6H), 2.91 (s, 2H), 3.52 (br s, 2H), 3.81 (br s, 2H), 3.97 (s, $3 \mathrm{H}), 4.42(\mathrm{~s}, 4 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.53-$ $7.60(\mathrm{~m}, 6 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$.

11-Benzyl-8,8-dimethyl-1-hydroxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c:1',2,3'-Im]carbazol-6-one Hydrobromide (20z). $\mathbf{2 0 z}$ was prepared as described for 20c, starting with 20y. Recrystallized from MeOH ; yield 73%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$) $\delta 1.36(\mathrm{~s}, 6 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 3.90(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.61(\mathrm{~m}$, $5 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$.
12-Benzyl-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3c:1', $\left.\mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (21a). Yield 94\%; mp 291-292 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} \mathrm{D}_{2} \mathrm{O}$) $\delta 3.03$ (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.20-3.30(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H})$, $4.81(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.65(\mathrm{~m}$, $6 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$.

12-Benzyl-2-methoxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[4,3-c: $\left.\mathbf{1}^{\prime}, \mathbf{2}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (21b). Yield 96\%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$) $\delta 2.98(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $\delta 3.23(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.26 (br s, 2H), 3.65 (br s, 2H), 3.85 $(\mathrm{s}, 3 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19 (dd, J = 1.8 and $8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 ($\mathrm{s}, 1 \mathrm{H}$), $7.56-7.71$ (m, $5 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H})$.

12-Benzyl-2-benzyloxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3-c:1', 2, $\mathbf{3}^{\prime}$-Im]carbazol-6-one Hydrochloride (21c). Yield 83\%; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$) $\delta 2.98$ (t, J $=7.5$ $\mathrm{Hz}, 2 \mathrm{H}$), $\delta 3.23$ (t, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.26 (br s, 2H), 3.66 (br s, $2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26$ (dd, J $=2.3$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.39-$ $7.72(\mathrm{~m}, 10 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H})$.
Methyl 12-Benzyl-7,8,10,11,12,13-hexahydro-6H-dipy-rido[4,3-c:1', $\mathbf{2}^{\text {, }}$, ${ }^{\prime}$-Im] carbazol-6-one-2-carboxylate Hydrochloride (21d). Yield 78\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{d}_{6} \mathrm{D}_{2} \mathrm{O}$) $\delta 3.06$ (t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), \delta 3.28(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.98(\mathrm{~s}$, $3 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.73(\mathrm{~m}, 5 \mathrm{H})$, $8.20(\mathrm{dd}, \mathrm{J}=1.6$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 8.52 (d, J $=8.6 \mathrm{~Hz}, 1 \mathrm{H}$).

12-Benzyl-3-methoxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[4,3-c:1 $\left.1^{\prime}, 2^{2}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (21e). Yield 78\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{d}_{2} \mathrm{O}$) $\delta 3.02$ (t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $\delta 3.19-3.26(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H})$, $4.81(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.67$ $(\mathrm{m}, 5 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$
12-Benzyl-3-hydroxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[4,3-c:1', $\mathbf{2}^{\prime}$,3'-Im]carbazol-6-one Hydrobromide (21f). 21f was prepared as described for 20c, starting with 21e. Recrystallized from MeOH ; yield 70%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6} /$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 3.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), \delta 3.18-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 4.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=2.3$ and 8 Hz , $1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.68(\mathrm{~m}, 6 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H})$.
12-Benzyl-2,3-dimethoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3-c:1',2',3'-Im]carbazol-6-one Hydrochloride (21g). Yield 88\%; ${ }^{13}$ NMR (DMSO-d $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$) $\delta 3.00$ (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $\delta 3.19$ (br s, 2H), $3.24(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53 (br
$\mathrm{s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 7.05$ (s, 1H), $7.19(\mathrm{~s}, 1 \mathrm{H}), 7.5-7.8(\mathrm{~m}, 5 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H})$.

12-Benzyl-8,8-dimethyl-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3-c:1',2',3'-lm]carbazol-6-one Hydrochloride (21h). Y ield 88\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{D}_{2} \mathrm{O}\right) \delta 1.40(\mathrm{~s}, 6 \mathrm{H}), 2.96$ $(\mathrm{s}, 2 \mathrm{H}), \delta 3.26(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.57(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}$, $2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.5-7.7(\mathrm{~m}, 7 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$ (d, J $=8 \mathrm{~Hz}, 1 \mathrm{H}$).

12-Benzyl-8,8-di methyl-2,3-dimethoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3-c:1',2 ,3'-Im]carbazol-6-one Hydrochloride (21i). Yield 91\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/$ D $\left._{2} \mathrm{O}\right) ~ \delta 1.38$ $(\mathrm{s}, 6 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.63(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.30$ (s, 1H), 7.55-7.72 (m, 5H), $8.00(\mathrm{~s}, 1 \mathrm{H})$.

General Procedure for Debenzylation Reactions. A suspension of the Diels-Alder adduct (1.0 g) and 5\% Pd/C (0.5 g) in MeOH (75 mL) was stirred initially under argon (10 min) and then under hydrogen at atmospheric pressure at $40{ }^{\circ} \mathrm{C}$ for 2 h or until the reaction was complete. The reaction mixture was filtered, and unless otherwise stated, the filtrate was concentrated under reduce pressure and the resulting precipitate was collected by filtration. If necessary, further purification was carried out as described. Unless otherwise stated, the following compounds were obtained by the above debenzylation procedure.

7,8,10,11,12,13-Hexahydro-6H-dipyrido[3,4-c:1',2 ,3-Im]-carbazol-6-one Hydrochloride (22a). Recrystallized from small quantities of MeOH as colorless needles; yield 64\%; mp $287-290{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 2.99(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}$, $\mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, \mathrm{~J}$ $=8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $277\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}\right)$ C, H,N.

1-Methoxy-7,8,10,11,12,13-Hexahydro-6H-dipyrido[3,4c:1',2 ,3'-Im]carbazol-6-one Hydrochloride (22b). Recrystallized from small quantities of MeOH ; yield 63\%; mp 284$286{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}, \mathrm{TSP}-$ salt) $\delta 2.99(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75$ $(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}) ; \mathrm{MS}$ m/e $307\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{HCl}\right.$. $\left.0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-Hydroxy-7,8,10,11,12,13-H exahydro-6H-dipyrido[3,4-c:1',2,3'-lm]carbazol-6-one Hydrobromide (22c). The product was obtained from 20c by the general procedure for debenzylation and then recrystallized from small quantities of MeOH . Yield 62%; $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 298 K) $\delta 2.97(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.43$ $(\mathrm{s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92$ (d, J $=8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $293\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} . \mathrm{HBr} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-Chloro-7,8,10,11,12,13-H exahydro-6H-dipyrido[3,4-c: 1',2',3'Im]carbazol-6-one Hydrochloride (22d). To a suspension of $\mathbf{2 0 d}(60 \mathrm{mg}, 0.14 \mathrm{mmol})$ in anhydrous THF (25 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(39 \mathrm{mg}, 0.28 \mathrm{mmol})$ was added with stirring vinyl chloroformate ($250 \mathrm{mg}, 2.35 \mathrm{mmol}$). The mixture was stirred at room temperature for 8 h and then filtered. The filtrate was taken to dryness, and the residue was redissolved in MeOH (25 mL) containing trifluoroacetic acid ($80 \mathrm{mg}, 0.7 \mathrm{mmol}$). The solution was refluxed for 10 h and cool ed to room temperature, ether containing $\mathrm{HCl}(10 \mathrm{~mL})$ and charcoal (100 mg) was added, and the mixture was stirred for 1 h . The mixture was filtered and the filtrate taken to dryness. The resulting residue was recrystallized from MeOH to give 22d as a white powder ($35 \mathrm{mg}, 73 \%$ yield). Mp 281-284 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 338 K) $\delta 3.06(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ ($\mathrm{s}, 2 \mathrm{H}$) , $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 2 \mathrm{H}), 8.57(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}$ m/e 313 and $311\left(\mathrm{MH}^{+}, 33\right.$ and 100, respectively). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OCl} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl 7,8,10,11,12,13-Hexahydro-6H-dipyrido[3,4-c: $\left.1^{\prime}, 2^{\prime}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one-1-carboxylate Hydrochloride
(22e). Recrystallized twice from a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$; yield $73 \% ; \mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{D}_{2} \mathrm{O}$, TSP-salt, 313 K) $\delta 3.06(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~s}$, $2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.72(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $335\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Methyl-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c: $\mathbf{1}^{\prime}, \mathbf{2}, \mathbf{3}^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (22f). Yield 63\%; mp 265-268 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{D}_{2} \mathrm{O}\right) \delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.97$ $(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{e}$ $335\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Methoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4c:1', $\left.\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (22g). Recrystallized from a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as colorless needles; yield 83%; mp $285-290{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{D}_{2} \mathrm{O}\right) \delta 2.99$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H})$, $7.20(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.32(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $307\left(\mathrm{MH}^{+}, 50\right)$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Hydroxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4c:1',2, $\left.\mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (22h). Recrystallized from a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as colorless needles; yield $56 \% ; \mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{d}_{2} \mathrm{O}\right) \delta 2.99(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.57(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=2.2$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}$, $\mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $293\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$. $\left.\mathrm{HCl} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Chloro-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c: $\left.\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (22i). 22i was prepared as described for 22d, starting with 20i. Recrystallized from MeOH ; yield 55%; mp $289-292^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 2.82(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.42$ $(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 7.21$ $(\mathrm{s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $1 \mathrm{H})$; HRMS $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{CIN}_{2} \mathrm{O}\right)$ found $\mathrm{m} / \mathrm{z} 311.0970$, calcd 311.0958.

7,8,10,11,12,13-Hexahydro-6H-dipyrido[3,4-c:1',2,3'-Im]-carbazol-6-one-2-carboxylic Acid Hydrochloride (22j). Recrystallized from MeOH as colorless needles; yield 76\%; mp $>330{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{D}_{2} \mathrm{O}\right) \delta 3.03(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.25(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, \mathrm{J}=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}$ m/e $321\left(\mathrm{MH}^{+}\right.$, 100). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 1.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl 7,8,10,11,12,13-Hexahydro-6H-dipyrido[3,4-c: 1',2',3'-Im]carbazol-6-one-2-carboxylate Hydrochloride (22k). A solution of 22j (0.32 g) in MeOH (50 mL) containing catalytic amounts of $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ was refluxed overnight. The mixture was cooled, and the white precipitate was collected by filtration and recrystallized from a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as colorless needles. Y ield 76\%; mp $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO$\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}, \mathrm{TSP}$-salt) $\delta 3.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.41(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}$ m/e $335\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Morpholinocarbonyl-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c:1',2,3'-Im]carbazol-6-one Hydrochloride (221). The residue obtained from the reaction was chromatographed on silica, eluting with 4\% concentrated ammonia in MeOH . The product was redissolved in MeOH , and $\mathrm{Et}_{2} \mathrm{O}$ containing HCl was added. The white precipitate was collected by filtration and dried in vacuo. Yield 88%; mp $250{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ /_{2} \mathrm{O}, \mathrm{TSP}$-salt) $\delta 3.09(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{~m}$, $4 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}$, $1 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $390\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Morpholinomethyl-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1',2,3-Im]carbazol-6-one Dihydrochloride (22m).

Yield 73\%; mp $230{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$, TSPsalt, 313 K) $\delta 3.08(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.39(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.93 (br s, 4H), $4.52(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{e}$ $376\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot 1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Methoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4c:1',2', $\left.\mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (22n). Recrystallized from MeOH as colorless needles; yield 77\%; mp > 300 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 3.02(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.24$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, \mathrm{J}=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=2.4$ and 8.7 $\mathrm{Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 1 \mathrm{H})$; MS m/e 307 (MH^{+}, 100). Anal. ($\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot$ $\left.0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Hydroxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4c:1',2, $\left.\mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrobromide (220). The product was obtained from 20n following the general procedure for debenzylation. Recrystallized from MeOH as colorless needles; yield $56 \% ; \mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{D}_{2} \mathrm{O}\right) \delta$ $3.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.52(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 6.94$ (dd, J $=2.1$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e 293 ($\left.\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HBr} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Chloro-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c: $\left.\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one H ydrochloride (22p). Recrystallized twice from MeOH as colorless needles; yield 19\%; mp 295-298 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{d}_{2} \mathrm{O}$,TSP-salt, 298 K) $\delta 3.06$ $(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}$, $\mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14 \mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H})$; HRMS $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}\right)$ found m/e 311.0980, cal cd 311.0955.

Methyl 7,8,10,11,12,13-Hexahydro-6H-dipyrido[3,4-c: $\mathbf{1}^{\prime}, \mathbf{2}^{2}, 3^{\prime}$-Im]carbazol-6-one Hydrochloride-3-carboxylate Hydrochloride (22q). The reaction mixture was filtered, and ether containing HCl was added. The resulting precipitate was recrystallized twice from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$. Y ield $64 \% ; \mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}, 323 \mathrm{~K}\right) \delta 3.04(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.26(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.96 (s, 3H), $4.43(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.93-8.02(\mathrm{~m}, 2 \mathrm{H}), 8.71$ (s, 1H); MS m/e $335\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}$, H, N.

3-Cyano-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c: $\left.\mathbf{1}^{\prime}, \mathbf{2}^{\boldsymbol{\prime}}, \mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (22r). Recrystallized from a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$; yield 64%; mp 282-285 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $/ \mathrm{d}_{2} \mathrm{O}$, TSP-salt, 298 K) $\delta 2.86(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H})$, $8.33(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $302\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Methoxy-7,8,10,11,12,13-hexahydro-6H-di pyrido[3,4c:1', $\left.\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (22s). Recrystallized from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$; yield 67%; mp $288-290^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{d}_{2} \mathrm{D}, 323 \mathrm{~K}\right) \delta 3.03(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.61(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.44$ $(\mathrm{s}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e 307 ($\mathrm{MH}^{+}, 100$). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Hydroxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4c:1', $\left.\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrobromide (22t). The product was obtained from 20s following the general procedure for debenzylation and then recrystallized from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$. Yield $90 \% ; \mathrm{mp}>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 3.11(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65$ $(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}),(\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H})$, $7.41(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{e} 293$ ($\mathrm{MH}^{+}, 100$). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HBr}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2,3-Dimethoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido-[3,4-c:1', $\mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (22u). Recrystallized from MeOH as colorless needles; yield 60%; mp $288-290{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 3.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.49-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$,
$3.92(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}$, $1 \mathrm{H})$; MS m/e $377\left(\mathrm{MH}^{+}, 100\right)$. Anal. ($\left.\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right)$ C, H, N.
2,3-Methylenedioxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', $\left.\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (22v). Recrystallized from MeOH as colorless needles; yield 69\%; mp $294-298{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 3.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}$, $\mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}$, $1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H})$; MS m/e $321\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$. $\left.\mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1,2,3-Trimethoxy-7,8,10,11,12,13-hexahydro-6H-dipy-rido[3,4-c:1', $\mathbf{2}^{\mathbf{1}}, 3^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (22w). Recrystallized from MeOH ; yield 55%; mp $210{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}, \mathrm{TSP}$-salt, 298 K) $\delta 2.98$ (t, J $=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, \mathrm{J}$ $=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.46(\mathrm{~s}$, $2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H})$; MS m/e $367\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl 2,3-Dimethoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c: $1^{\prime}, \mathbf{2}, 3$ - Im]carbazol-6-one-9-carboxylate Hy drochloride (22x). Yield 65\%; mp $270{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./{ }^{2} \mathrm{D}_{2} \mathrm{O}\right) \delta 3.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, 2 H), 3.54 (s, 4H), 3.89 ($\mathrm{s}, 3 \mathrm{H}$), 3.92 (s, 3H), 3.94 (s, 3H), 4.43 (s, 2H), 7.53 (s, 1H), $8.01(\mathrm{~s}, 1 \mathrm{H})$; MS m/e $395\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

9-Acetoxymethyl-2,3-dimethoxy-7,8,10,11,12,13-hexahy-dro-6H-dipyrido[3,4-c:1', $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (22y). Yield 75%; mp $290^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H})$, 5.22 (s, 2H), 7.51 (s, 1H), 8.01 (s, 1H); MS m/e $409\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl} \cdot 1.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8,8-Dimethyl-1-methoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c:1', $\mathbf{2}^{\prime}$, $\mathbf{3}^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (22z). Recrystallized from MeOH as colorless needles; yield 50\%; mp 275-278 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$) $\delta 1.39$ (s, 6H), $2.90(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.98 (s, 3H), $4.39(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H})$, $7.40(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz} \mathrm{lH}), 8.0(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{e} 335\left(\mathrm{MH}^{+}\right.$, 100); HRMS ($\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$) found $\mathrm{m} / \mathrm{z} 335.1790$, calcd 335.1772.

8,8-Dimethyl-1-hydroxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[3,4-c:1', $\mathbf{2}^{\prime}, 3^{\prime}$-Im] carbazol-6-one Hydrobromide (22aa). The product was obtained from $\mathbf{2 0 z}$ following the general procedure for debenzylation. Recrystallized from MeOH as col orless needles; yield 50%; $\mathrm{mp}>330^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 1.38(\mathrm{~s}, 6 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz} 1 \mathrm{H}), 8.0(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $1 \mathrm{H})$; MS m/e $321\left(\mathrm{MH}^{+}, 100\right)$. Anal. ($\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HBr} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
7,8,10,11,12,13-Hexahydro-6H-dipyrido[4,3-c:1', $\mathbf{2}^{\prime}$,3'-Im]-carbazol-6-one Hydrochloride (23a). Recrystallized from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as col orless needles (97% yield before recrystallization); mp 295-298 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$) $\delta 3.02$ (t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.40(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $277\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Methoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3c:1', $\left.\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (23b). Recrystallized from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as col orless needles (91% yiel d before recrystallization); $m p 288-295{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}$) $\delta 2.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}$, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.75(\mathrm{~s}$, $2 \mathrm{H}), 7.19$ (dd, J $=2.4$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e 307 (MH ${ }^{+}, 100$). Anal. ($\left.\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Hydroxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3c:1', $\left.\mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (23c). Recrystallized from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as col orless needles (83% yiel d before recrystallization); $\mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) ~ \delta 2.96$ $(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=6.0$
$\mathrm{Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=$ 1.9 and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H})$, $8.16(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $293\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl 7,8,10,11,12,13-Hexahydro-6H-dipyrido[4,3-c: $\mathbf{1}^{\prime}, \mathbf{2}^{\mathbf{\prime}}, \mathbf{3}^{\prime}$-Im]carbazol-6-one-2-carboxylate Hydrochloride (23d). Recrystallized from MeOH as colorless needles; yield $83 \% ; \mathrm{mp}>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 3.06(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.48$ $(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 8.20$ (dd, J = 1.5 and $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.47(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}$, $\mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $335\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$. $\left.\mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Methoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3c:1', $\mathbf{2}^{\mathbf{2}} \mathbf{3}^{\prime}$-Im]carbazol-6-one Hydrochloride (23e). Recrystallized from MeOH as col orless needles; yield 65%; $\mathrm{mp}>300$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 3.02(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.14$ $(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=2.3$ and 8.6 $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}, 1 \mathrm{H})$; MS m/e $307\left(\mathrm{MH}^{+}, 100\right)$; HRMS $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ found $\mathrm{m} / \mathrm{z} 307.1470$, calcd 307.1460.

3-Hydroxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3c:1', $\left.\mathbf{2}^{2}, 3^{\prime}-\mathrm{Im}\right]$ carbazol-6-one Hydrochloride (23f). The product was obtained from 21f following the general procedure for debenzylation and then recrystallized from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as colorless needles; yield 75%; $\mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6} / \mathrm{D}_{2} \mathrm{O}\right) \delta 3.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.22(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H})$, 6.95 (dd, J $=2.3$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e $293\left(\mathrm{MH}^{+}, 100\right)$. Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HBr} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2,3-Dimethoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido-[4,3-c:1', $\mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (23g). Recrystallized from MeOH as colorless needles; yield 29%; mp $285-287{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{D}_{2} \mathrm{O}\right) \delta 3.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}$, $\mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~s}$, 1H), 7.40 (s, 1H), 8.02 (s, 1H); MS m/e 337 ($\mathrm{MH}^{+}, 100$). Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8,8-Dimethyl-7,8,10,11,12,13-hexahydro-6H-dipyrido-[4,3-c:1', $\mathbf{2}^{\prime}, 3^{\prime}-\mathrm{Im}$]carbazol-6-one Hydrochloride (23h). Recrystallized from MeOH as colorless needles; yield 89%; mp $292-296{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}^{2} \mathrm{~d}_{6} / \mathrm{D}_{2} \mathrm{O}$) $\delta 1.41(\mathrm{~s}, 6 \mathrm{H}), 2.96(\mathrm{~s}$, $2 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~s}$, $2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.01 (d, J $=8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.44(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/e 305 ($\mathrm{MH}^{+}, 100$). Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8,8-Dimethyl-2,3-dimethoxy-7,8,10,11,12,13-hexahydro-6H-dipyrido[4,3-c:1 $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, 3^{\prime}$-Im]carbazol-6-one Hydrochloride (23i). Recrystallized from MeOH as colorless needles; yield 77%; mp $285-288{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left./ \mathrm{d}_{2} \mathrm{O}\right) \delta 1.39$ $(\mathrm{s}, 6 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, \mathrm{J}=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H})$, $7.42(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H})$; MS m/e $365\left(\mathrm{MH}^{+}, 100\right)$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Radioligand Binding. CHO cells stably expressing cDNAs encoding human muscarinic $M_{1}-M_{4}$ receptors were grown to confluence in α-MEM medium (GIBCO) containing 10\% (v/v) newborn calf serum, $50 \mathrm{U} / \mathrm{mL}$ penicillin, $50 \mathrm{mg} / \mathrm{mL}$ streptomycin, and 2 mM glutamine at $37^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$ and harvested by scraping in a hypotonic medium (20 mM Hepes +10 mM EDTA, pH 7.4). Membranes were prepared at $0{ }^{\circ} \mathrm{C}$ by homogenization with a Polytron followed by centrifugation ($40000 \mathrm{~g}, 15 \mathrm{~min}$), were washed once in 20 mM Hepes +0.1 mM EDTA, pH 7.4 , and were stored at $-70^{\circ} \mathrm{C}$ in the same buffer at protein concentrations of $2-5 \mathrm{mg} / \mathrm{mL}$.

The binding assays and analyses have been described previously. ${ }^{28,36,37}$ In general, binding of ${ }^{3} \mathrm{H}-$ NMS was conducted in a buffer containing 20 mM Hepes +100 mM NaCl $+10 \mathrm{mM} \mathrm{MgCl} 2(\mathrm{pH} 7.4)$ at $30^{\circ} \mathrm{C}$ in a volume of 1 mL . Membranes were col lected by filtration over glass fiber filters (Whatman GF/B) presoaked in 0.1% polyethylenimine, using a Brandel cell harvester (Semat, Herts, U.K.), extracted
overnight in scintillation fluid (ReadySafe, Beckman), and counted for radioactivity in Beckman LS6000 scintillation counters. Membrane protein concentrations ($5-50 \mu \mathrm{~g} / \mathrm{mL}$) were adjusted so that not more than about 15% of added radioligand was bound. Nonspecific binding was measured in the presence of $10^{-6} \mathrm{M}$ QNB (an antagonist with picomolar potency) and accounted for $1-5 \%$ of total binding. Test compounds were dissolved in DMSO that, at the highest final concentration of 1%, had no effect on binding.

The equilibrium assays utilized an incubation time of at least 2 h in the presence of GTP $\left(2 \times 10^{-4} \mathrm{M}\right)$ and ${ }^{3} \mathrm{H}-\mathrm{NMS}$ concentrations of $0.1-0.7 \mathrm{nM}$, depending on receptor subtype. In most assays binding of ${ }^{3} \mathrm{H}-\mathrm{NMS}$ in the absence and presence of an IC I_{50} concentration of ACh was measured alone and in the presence of three or more concentrations of test agent. Selected compounds were studied further with an equilibrium assay that measured inhibition curves with ACh alone and in the presence of three concentrations of test agent and/or with a nonequilibrium assay in which the receptors in half the tubes were equilibrated with ${ }^{3} \mathrm{H}-\mathrm{NMS}$ before addition of ACh and test agent, while the receptors in the remaining tubes were exposed to ACh and test agent before exposure to ${ }^{3} \mathrm{H}-\mathrm{NMS}$. In all cases the data were fitted to the allosteric model using nonlinear regression analysis (SigmaPlot, SPSS, Erkrath, Germany) to provide quantitative estimates of the affinity of the agent at the unliganded receptor and its cooperativity with ${ }^{3} \mathrm{H}-\mathrm{NMS}$ and ACh. When the analysis required that kinetic effects on ${ }^{3} \mathrm{H}-\mathrm{NMS}$ binding betaken into account, values of $0.075,0.361,0.064$, and $0.066 \mathrm{~min}^{-1}$ were used for the dissociation rate constants of ${ }^{3} \mathrm{H}-\mathrm{NMS}$ at $\mathrm{M}_{1}, \mathrm{M}_{2}$, M_{3}, and M_{4} receptors, respectively. ${ }^{28}$

In the off-rate assay, a high concentration of membranes ($2-4 \mathrm{mg}$ protein $/ \mathrm{mL}$) was incubated with a high concentration of ${ }^{3} \mathrm{H}-\mathrm{NMS}(5 \mathrm{nM})$ for about 15 min . Then $10 \mu \mathrm{~L}$ aliquots were distributed into tubes that were empty or contained 1 mL of $10^{-6} \mathrm{M}$ QNB alone and in the presence of at least four concentrations of allosteric agent. Nonspecific binding was measured in separately prepared tubes containing $10 \mu \mathrm{~L}$ of membrane and 2 mL of ${ }^{3} \mathrm{H}-\mathrm{NMS}+$ QNB. Sometime later, about 2.5 dissociation half-lives, the samples werefiltered. The data were transformed to dissociation rate constants, expressed as the percentage inhibition of the "true" ${ }^{3} \mathrm{H}-\mathrm{NMS}$ dissociation rate constant measured in the absence of allosteric agent, and fitted to a logistic function using nonlinear regression analysis. This curve corresponds theoretically to the occupancy curve of the allosteric agent at the ${ }^{3} \mathrm{H}-$ NMSoccupied site, and the regression analysis provides a quantitative estimate of the affinity of the agent for the ${ }^{3} \mathrm{H}-\mathrm{NMS}$ occupied receptor.

Acknowledgment. This work was supported by Sankyo Co. Ltd., Tokyo, J apan, and by the Medical Research Council. We also gratefully acknowledge the ULIRS mass spectrometry facility at the School of Pharmacy for providing the MS data and the microanaIytical section of the Department of Chemistry, University College London for elemental analysis.

Supporting Information Available: Additional information on the methodology for performing and analyzing the equilibrium and nonequilibrium binding assays. This material is available free of charge via the Internet at http:// pubs.acs.org.

References

(1) Caulfield, M. P.; Birdsall, N. J. M. International Union of Pharmacology: nomenclature of muscarinic receptors. Pharmacol. Rev. 1998, 50, 279-290
(2) Caulfield, M. P. Muscarinic receptor classification. In Muscarinic Receptor Subtypes in Smooth Muscle; Eglen, R. M., Ed.; CRC Press: New York, 1997; pp 1-37.
(3) Eglen, R. M.; Watson, N. Selective muscarinic receptor agonists and antagonists. Pharmacol. Toxicol. 1996, 78, 59-78.
(4) Eglen, R. M.; Nahorski, S. R. The muscarinic M_{5} receptor: a silent or emerging subtype? Br. J. Pharmacol. 2000, 130, 1321.
(5) Hulme, E. C.; Birdsall, N. J. M.; Buckley, N. J. Muscarinic receptor subtypes. Annu. Rev. Pharmacol. Toxicol. 1990, 30, 633-673.
(6) Hulme E. C.; Lu, Z.-L.; Bee, M.; Curtis, C. A. M.; Saldanha, J . The conformational switch in muscarinic acetylcholine receptors. Life Sci. 2001, 68, 2495-2500.
(7) Ehlert, F. J. Gallamine allosterically antagonizes muscarinic receptor-mediated inhibition of adenylate cyclase activity in the rat myocardium. J. Pharmacol. Exp. Ther. 1988, 247, 596-602.
(8) Lee, N. H.; El-Fakahany, E. E. Allosteric antagonists of the muscarinic acetylcholine receptor. Biochem. Pharmacol. 1991, 42, 199-205.
(9) Ellis, J. Allosteric binding sites on muscarinic receptors. Drug Dev. Res. 1997, 40, 193-204.
(10) Christopoulos A.; Lanzafame, A.; Mitchelson, F.; Allosteric interactions at muscarinic cholinoceptors. Clin. Exp. Pharmacol. Physiol. 1998, 25, 185-194.
(11) Holzgrabe, U.; M ohr, K. Allosteric modulators of ligand binding to muscarinic acetylcholine receptors. Drug Discovery Today 1998, 3, 214-222.
(12) Birdsall, N. J. M.; Lazareno, S.; Popham, A.; Saldanha, J. Multiple all osteric sites on muscarinic receptors. LifeSci. 2001, 68, 2517-2524.
(13) Stockton, J. M.; Birdsall, N. J . M.; Burgen, A. S.; Hulme, E. C. Modification of the binding properties of muscarinic receptors by gallamine. Mol. Pharmacol. 1983, 23, 551-557.
(14) Clark, A. L.; Mitchelson, F. The inhibitory effect of gallamine on muscarinic receptors. Br. J. Pharmacol. 1976, 58, 323-331.
(15) Tucek, S.; Musilkova, J .; Nedoma, J .; Proska, J.; Shelkovnikov, S.; Vorlicek, J. Positive cooperativity in the binding of alcuronium and N -methylscopolamine to muscarinic acetylcholine receptors. Mol. Pharmacol. 1990, 38, 674-680.
(16) Christopoulos, A.; Loiacono, R.; Mitchelson, F. Binding of the muscarine receptor antagonist heptane-1,7-bis(dimethyl-3'phthalimidopropyl)ammonium bromide at cholinoceptor sites. Eur. J. Pharmacol. 1993, 246, 1-8.
(17) Waelbroeck, M. Identification of drugs competing with Dtubocurarine for an allosteric site on cardiac muscarinic receptors. Mol. Pharmacol. 1994, 46, 685-692.
(18) Lysikova, M.; Fuksova, K.; Elbert, T.; J akubik, J.; Tucek, S. Subtype-selective inhibition of [methyl-3H]-N-methylscopolamine binding to muscarinic receptors by alpha-truxillic acid esters. Br. J. Pharmacol. 1999, 127, 1240-1246.
(19) Nassif-Makki, T.; Tränkle, C.; Zlotos, D.; Bejeuhr, G.; Cambareri, A.; Pfletschinger, C.; K ostenis, E.; Mohr, K.; Holzgrabe, U. Bisquaternary ligands of the common allosteric site of M_{2} acetylcholine receptors: search for the minimum essential distances between the pharmacophoric elements. J . Med. Chem. 1999, 42, 849-858.
(20) Christopoulos, A.; Sorman, J . L.; Mitchelson, F.; EI-Fakahany, E. E. Characterization of the subtype selectivity of the allosteric modulator heptane-1,7-bis-(dimethyl-3'-phthalimidopropyl)ammonium bromide ($\mathrm{C} 7 / 3$-phth) at cloned muscarinic acetylcholine receptors. Biochem. Pharmacol. 1999, 57, 171-179.
(21) Ellis, J.; Seidenberg, M. Interactions of alcuronium, TMB-8, and other allosteric ligands with muscarinic acetylcholine receptors: studies with chimeric receptors. Mol. Pharmacol. 2000, 58, 1451-1460.
(22) Zlotos, D. P.; Buller, S.; Tränkle, C.; Mohr, K. Bisquaternary caracurine V derivatives as allosteric modulators of ligand binding to M_{2} acetylcholine receptors. Bioorg. Med. Chem. Lett. 2000, 10, 2529-2932.
(23) Botero Cid, H. M.; Tränkle, C.; Baumann, K.; Pick, R.; MiesKlomfass, E.; K ostenis, E.; M ohr, K.; H olzgrabe, U. Structureactivity relationships in a series of bisquaternary bisphthalimidine derivatives modulating the muscarinic M(2)-receptor allosterically. J. Med. Chem. 2000, 43, 2155-2164.
(24) Li, R.; Tränkle, C.; M ohr, K.; Holzgrabe, U. Hexamethoniumtype allosteric modulators of the muscarinic receptors bearing Iateral dibenzazepine moieties. Arch. Pharm. (Weinheim, Ger.) 2001, 334, 121-124.
(25) Tränkle, C.; Weyand, O.; Schroter, A.; Mohr, K. Using a radioalloster to test predictions of the cooperativity model for gallamine binding to the allosteric site of muscarinic acetylcholine M(2) receptors. Mol. Pharmacol. 1999, 56, 962-965.
(26) Birdsall, N. J. M.; Farries, T.; Gharagozloo, P.; K obayashi, S.; Kuonen, D.; Lazareno, S.; Popham, A.; Sugimoto, M. Selective allosteric enhancement of the binding and actions of acetylcholine at muscarinic receptor subtypes. Life Sci. 1997, 60, 10471052.
(27) J akubik, J.; Bakakova, L.; EI-Fakahany, E.E.;Tucek, S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 1997, 52, 172-179.
(28) Lazareno, S.; Gharagozl oo, P.; Kuonen, D.; Popham, A.; Birdsall, N.J.M. Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors, radioligand binding studies. Mol. Pharmacol. 1998, 53, 573-589.
(29) Birdsall, N. J. M.; Farries, T.; Gharagozloo, P.; K obayashi, S.; Lazareno, S.; Sugimoto, M. Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: functional studies. Mol. Pharmacol. 1999, 55, 778-786.
(30) Gharagozloo, P.; Lazareno, S.; Popham, A.; Birdsall, N. J. M. Allosteric interactions of quaternary strychnine and brucine derivatives with muscarinic acetylcholine receptors. J. Med. Chem. 1999, 42, 438-445.
(31) Lazareno, S.; Birdsall, B.; Fukazawa, T.; Gharagozloo, P.; Hashimoto, T.; Kuwano, H.;' Popham, A.; Sugimoto, M.; Birdsall', N.J.M. Allosteric effects of four stereoisomers of a fused indole ring system with ${ }^{3} \mathrm{H}-\mathrm{N}$-methyl scopolamine and acetylcholine at $M_{1}-M_{4}$ muscarinic receptors. Life Sci. 1999, 64, 519-526.
(32) Gharagozloo, P.; Miyauchi, M.; Birdsall, B.; Birdsall, N. J. M. Intramolecular Diels-Alder reactions of 3-(tetrahydropyridinyl)indoles: stereoselective synthesis of novel pentacyclic ring systems. J. Org. Chem. 1998, 63, 1974-1980.
(33) Gharagozloo, P.; Lazareno, S.; Miyauchi, M.; Popham, A.; Birdsall, N. J. M. Synthesis of novel pentacyclic carbazoles as muscarinic allosteric agents. Life Sci. 1997, 60, 1169.
(34) Gharagozloo, P.; Miyauchi, M.; Birdsall, N. J. M. 3-(Tetrahydropyridyl) indoles. Tetrahedron 1996, 52, 10185-10192.
(35) Toro, A.; Lemelin, C. A.; Preville, P.; Belanger, G.; Deslongchamps, P. Transannular Diels-Alder Studies on the Asymmetric Synthesis of (+)-Maritimol. Tetrahedron 1999, 15, 46554684.
(36) Lazareno, S.; Birdsall, N. J. M. Detection, quantitation and verification of allosteric interactions of agents with labelled and unlabelled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol. 1995, 48, 362-378.
(37) Lazareno, S.; Popham, A.; Birdsall, N. J. M. Allosteric interactions of staurosporine and other indolocarbazoles with N -[meth-$\mathrm{yl}-{ }^{-3} \mathrm{H}$]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol. Pharmacol. 2000, 58, 194-207.
(38) Pedder, E. K.; Eveleigh, P.; Poyner, D.; Hulme, E. C.; Birdsall, N. J. M. Modulation of the structure-binding relationships of antagonists for muscarinic acetylcholine receptor subtypes. Br . J . Pharmacol. 1991, 103, 1561-1567.
(39) Potter, L. T.; Ferrendelli, C. A.; Hanchett, H. E.; Hollifield, M. A.; Lorenzi, M. V. Tetrahydroaminoacridine and other allosteric antagonists of hippocampal M1 muscarine receptors. Mol. Pharmacol. 1989, 35, 652-660.
(40) Zeng, F. Y.; Wess, J . Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem. 1999, 274, 19487-19497.
(41) Chidiac, P.; Green, M. A.; Pawagi, A. B.; Wells, J . W. Cardiac muscarinic receptors. Cooperativity as the basis for multiple states of affinity. Biochemistry 1997, 36, 7361-7379.
(42) Perrin, D. D.; Armarego, L. F. Purification of the Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
J M $010946 Z$

[^0]: * To whom correspondence should be addressed. Address: Computational, Combinatorial and Medicinal Chemistry, Purdue Pharma, 7 Clarke Drive, Cranbury, NJ 08512. Telephone: 609-860-0700. Fax: 609-860-0781. E-mail: parviz.gharagozloo@pharma.com.
 ${ }^{\dagger}$ MRC Technology Research Division.
 \ddagger Current address: Sankyo Co. Ltd., 2-58 Hiromachi 1-chome, Shinagawa-ku, Tokyo, 140, J apan.
 § National Institute for Medical Research.

